

Human FGF9 ELISA Kit Cat. No. CL0348 96-wells

COMPONENTS

Kit Component	Amount
96-well plate precoated with anti-human FGF9 antibody	1 Plate
Protein Standard: Lyophilized recombinant human FGF9	2 tubes, 10 ng/tube
Sample Diluent Buffer	30 ml
Biotinylated Antibody (Anti-human FGF9)	130 µl (100x)
Antibody Diluent Buffer	12ml
Avidin-Biotin-Peroxidase Complex (ABC) Solution	130 µl (100x)
ABC Diluent Buffer	12 ml
Tetramethyllbenzidine (TMB) Color Developing Agent	10 ml
TMB Stop Solution	10 ml

Washing Buffer (not provided): TBS or PBS

0.01M TBS: Add 1.2g Tris, 8.5g NaCl; 450µl of purified acetic acid or 700µl of concentrated hydrochloric acid to 900ml H₂O and adjust pH to 7.2-7.6. Adjust the total volume to 1L.

0.01M PBS: Add 8.5g sodium chloride, 1.4g Na₂HPO₄ and 0.2g NaH₂PO₄ to 900ml distilled H₂O and adjust pH to 7.2-7.6. Adjust the total volume to 1L.

Storage

Store at 4°C. Cell Applications, Inc. recommends using the kit within 6 months of order.

BACKGROUND

FGFs comprise a large family of proteins that includes at least 22 known members. FGFs bind and signal through low and high affinity FGF receptors. The four known high affinity receptors (FGFR1-4) are structurally similar transmembrane receptor tyrosine kinases. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion.¹

FGF9 is a 26 kDa secreted protein and is a potent mitogen and survival factor required for morphogenesis during embryonic development and numerous biological functions at adulthood. It plays critical role in epidermal proliferation and wound healing in the skin of mice. FGF9 acts on its receptors (FGFR2 and 3) to activate intracellular signal transduction cascades on target cells, which affects the expression of downstream target genes including members of BMP family. The expression of BMP-2, BMP-4 and noggin (the inducible antagonist of BMP-2) are known to affect proliferation and cell survival as a result of FGF9 activation in human tissue. Moreover, FGF9 exhibits a growthstimulating effect on cultured glial cells. In nervous system, this protein is produced mainly by neurons and may be important for glial cell development. Expression of the mouse homolog of this gene was found to be dependent on Sonic hedgehog (Shh) signaling. Mice lacking the homolog gene displayed a male-to-female sex reversal phenotype, which suggested a role in testicular embryogenesis. Furthermore, FGF9 can regulate multiple SRY (sexdetermining region on the Y gene)-dependent processes. It was demonstrated that FGF9 produced in the fetal testis acts directly on germ cells to inhibit meiosis; in addition, FGF9 maintains expression of pluripotency-related genes and upregulates markers associated with male germ cell fate.² It was also reported that FGF9 stimulates steroidogenesis in postnatal Leydig cells. Ras-MAPK, PI3K and PKA signaling pathways are involved in the FGF9-induced steroidogenesis.³ Additionally, FGF9 expression is sufficient to convert the differentiation program of mesoderm-derived cranial mesenchyme cells from intramembranous to endochondral ossification.⁴ Furthermore, FGF9 may be involved in embryonic skeletal development. It play an important role in long bone repair, presumably by initiating angiogenesis through VEGF-A.⁵

References

- Turner, N. & Grose, R.: Nat. Rev. Cancer 10:116-29, 2010 Bowles, J. et al: Dev. Cell 19:440-9, 2010
- Lin, Y.M. et al: Int. J. Androl. 33:545-53, 2010 3.
- 4
- Kim, Y. et al: PLoS Biology 4:e187, 2006 Behr, B. et al: Proc. Natl. Acad. Sci. USA 107:11853-8, 2010

Target Protein Species: Range Specificity

Human

Figure 1: FGF9 Standard Curve. Using the Human FGF9 ELISA Kit, O.D. data was graphed against FGF9 protein concentration. The TMB reaction was incubated at 37°C for 30 min.

ELISA OVERVIEW

Cell Applications ELISA Kits are based on standard sandwich enzyme-linked immunosorbent assay technology. Freshly prepared standards, samples, and solutions are recommended for best results.

- 1. Prepare test samples.
- Prepare a protein standard of the target protein. 2.
- 3. Add test samples and standards to the pre-coated 96-well plate. Do not wash.
- 4. Add biotinylated detection antibodies. Wash.
- 5. Add Avidin-Biotin-Peroxidase Complex (ABC) Solution. Wash.
- Add Tetramethyllbenzidine (TMB) Color Developing Agent, containing 6. HRP substrate.
- Add TMB Stop Solution 7
- 8. Subject the plate to analysis.

NOTES:

- Before using the kit, quick spin tubes to bring down all solution to the bottom of tube.
- Duplicate assay wells are recommended for both standard and sample testing.
- Do not let the 96-well plate dry, this will lead to inactivation of plate components.
- When diluting samples and reagents, ensure that they are mixed completely and evenly.
- Pre-warm diluted ABC and TMB solutions at 37°C for 30 min before use to avoid variable temperature effects.
- For washes, use TBS or PBS. Do not touch well walls.
- A protein standard is included in the kit. A protein standard detection curve should be generated with each experiment, no more than 2 hours prior to the experiment.
- The user will determine sample dilution fold by estimation of target protein amount in samples.
- FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR CLINICAL USE.

PROTOCOL

I. Plate Washing

Discard the solution in the plate without touching the side walls. Blot the plate onto paper towels or other absorbent material. Soak each well with at least 0.3 ml PBS or TBS buffer for 1~2 minutes. Repeat this process two additional times for a total of three washes.

II. Preparation of Test Samples

Test Sample Processing

- Cell culture supernate, tissue lysate or body fluids: Remove particulates by centrifugation.
- Serum: Allow the serum to clot in a serum separator tube (about 2 hours) at room temperature. Centrifuge at approximately 1000 X g for 10 min.
- Plasma: Collect plasma using EDTA as an anticoagulant. Centrifuge for 15 min at 1000 x g within 30 min of collection. Analyze immediately or aliquot and store frozen at -70°C. Heparin and citrate are not recommended as the anticoagulant.

Sample Dilution Guideline

Estimate the concentration of the target protein in the sample and select a proper dilution factor such that the diluted target protein concentration falls within the standard curve range. Depending on the sample, several trial dilutions may be necessary. Dilute the sample using the provided diluent buffer, mixing well. Suggested working dilutions of samples are as follows:

Target Protein	Sample	Sample	Diluent
Concentration Range	Working Dilution	Vol.	Buffer Vol.
40-400 ng/ml	1:100	1 µl	99 µl
4-40 ng/ml	1:10	10 µl	90 µl
62.5-4000 pg/ml	1:2	50 µl	50 µl
≤62.5 pg/ml	n/a	100ul	n/a

If samples will be assayed within 24 hours, store at 2-8°C. For long-term storage, aliquot and freeze samples at -20°C. Avoid repeated freeze-thaw cycles.

III. Preparation of Reagents

Reconstitution of the Standard

The standard solutions should be prepared no more than 2 hours prior to the experiment. Two tubes of the standard are included in each kit. Use one tube for each experiment.

- 1. 10,000pg/ml of human FGF9 standard solution: Add 1 ml sample diluent buffer into one tube, keep the tube at room temperature for 10 min and mix thoroughly.
- 4000pg/ml of human FGF9 standard solution: Add 0.4 ml of the above 10ng/ml FGF9 standard solution into 0.6 ml sample diluent buffer and mix thoroughly.
- 2000pg/ml→62.5pg/ml of human FGF9 standard solutions: Label 6 Eppendorf tubes with 2000pg/ml, 1000pg/ml, 500pg/ml, 250pg/ml, 125pg/ml, 62.5pg/ml, respectively. Aliquot 0.3 ml of the sample diluent buffer into each tube. Add 0.3 ml of the above 4000pg/ml FGF9 standard solution into 1st tube and mix. Transfer 0.3 ml from 1st tube to 2nd tube and mix. Transfer 0.3 ml from 2nd tube to 3rd tube and mix, and so on.

Preparation of Biotinylated Antibody Working Solution

The solution should be prepared no more than 2 hours prior to the experiment. 1. The total volume should be: 0.1ml/well x (the number of wells). (Allowing

- The total volume should be: 0.1mi/weil x (the number of weils). (Allowing 0.1-0.2 ml more than total volume)
- 2. Biotinylated antibody should be diluted in 1:100 with the antibody diluent buffer and mixed thoroughly.

Target Protein Species: Range Specificity

Human 62.5 pg/ml – 4000 pg/ml No detectable cross-reactivity with other cytokines

Preparation of the Avidin-Biotin-Peroxidase Complex (ABC) Working Solution

The solution should be prepared no more than 1 hour prior to the experiment.

- 1. The total volume should be: 0.1ml/well x (the number of wells). (Allowing 0.1-0.2 ml more than total volume)
- 2. Avidin- Biotin-Peroxidase Complex (ABC) should be diluted in 1:100 with the ABC dilution buffer and mixed thoroughly.

IV. ELISA

The ABC working solution and TMB color developing agent must be kept warm at 37°C for 30 min before use. When diluting samples and reagents, they must be mixed completely and evenly. A standard detection curve should be prepared for each experiment. The user will decide sample dilution fold by crude estimation of target protein amount in samples.

- Aliquot 0.1ml per well of the 4000pg/ml, 2000pg/ml, 1000pg/ml, 500pg/ml, 250pg/ml, 125pg/ml, 62.5pg/ml human FGF9 standard solutions into the precoated 96-well plate. Add 0.1ml of the sample diluent buffer into the control well (Blank well). Add 0.1ml of each properly diluted sample of human sera, plasma, body fluids, tissue lysates or cell culture supernatants to each empty well. See "Sample Dilution Guideline" for details. We recommend that each human FGF9 standard solution and each sample is measured in duplicate.
- 2. Seal the plate with the cover and incubate at 37°C for 90 min.
- 3. Remove the cover, discard plate content, and blot the plate onto paper towels or other absorbent material. Do NOT let the wells completely dry at any time.
- 4. Add 0.1ml of biotinylated anti-human FGF9 antibody working solution into each well and incubate the plate at 37°C for 60 min.
- 5. Wash the plate three times with 0.01M TBS or 0.01M PBS, and each time let washing buffer stay in the wells for 1 min. Discard the washing buffer and blot the plate onto paper towels or other absorbent material.
- Add 0.1ml of prepared ABC working solution into each well and incubate the plate at 37°C for 30 min.
- 7. Wash plate 5 times with 0.01M TBS or 0.01M PBS, and each time let washing buffer stay in the wells for 1-2 min. Discard the washing buffer and blot the plate onto paper towels or other absorbent material.
- Add 90 µl of prepared TMB color developing agent into each well and incubate plate at 37°C for 15-20 min (shades of blue can be seen in the wells with the four most concentrated human FGF9 standard solutions; the other wells show no obvious color).
- 9. Add 0.1ml of prepared TMB stop solution into each well. The color changes into yellow immediately.
- 10. Read the O.D. absorbance at 450nm in a microplate reader within 30 min after adding the stop solution.

V. Calculating Protein Concentration

- For all wells, determine O.D.450(Relative): O.D.450(Relative) = O.D.450(Reading) – O.D.450(Blank)
 - Plot the standard curve: Plot O.D.450(Relative) of each standard solution (Y) vs. the respective concentration of the standard solution (X). See **Figure 1** for a typical standard curve.
- The target protein concentration in samples can be interpolated from the standard curve. Multiply the interpolated concentration by the dilution factor to obtain the target protein concentration in the sample.

FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR CLINICAL USE.

